

DEVELOPMENT OF A LOW COST INTELLIGENT TOOL FOR
LITERACY TEACHING AND LEARNING

Sorin Nicola, Radu Solea, Ionut Dinulescu,
 Dan Dobriceanu, Romeo Tonca

University of Craiova,
 Faculty of Automation, Computers and Electronics

Abstract: The tool described in this paper consist in an embedded system based on a cost
effective thin-client PC (the e-Box) and running a software developed in Windows CE
environment, using .NET compact framework and C# as programming language.
External hardware used with e-Box is: a graphic tablet as pointing device, a VGA to
TV converter for using a standard TV set as display, an USB memory stick and speakers.
The application is developed for Romanian language but there is also provided necessary
building blocks and interfaces to help other developers extend the platform for their own
language and culture.

Keywords: embedded systems, educational aids, teaching, learning, character
recognition.

1. INTRODUCTION AND BACKGROUND

Illiteracy is still a black hole in modern-day society,
with around one billion people all over the world
unable to read or write. In advanced societies,
illiteracy is closely linked to social exclusion, to
shame, social immobility and poverty (Blake and
Blake, 2002).
As starting point was the Romanian example of
Roma people minority, whose illiteracy level is
notorious, illiteracy that, among other causes, is
feeding a real poverty cycle. A World Bank study
(Ringold et al., 2003) states that compared to the
estimated national illiteracy rate of 2 to 4 percent
(Romanian Ministry of Education, 1998), 44 percent
of Roma men, and 59 percent of Roma women were
illiterate. This is also true for other more developed
countries. Another example in the same study,
referring to Spain states that, even if Spain is EU
member for a long time, illiteracy levels for adult
Roma are high, with rates approaching 70 percent.
For the population over the age of 55, illiteracy rates
for men and women are around 75 percent and 90
percent, respectively. In Portugal, almost half of the

population can barely read and write. Even in
Germany, 14 per cent of the country’s population is
stated to have severe difficulties with reading and
writing (Deutsche Welle, 2002).
Due to lack of resources and limited knowledge of
available technology, adult literacy programs in
Romania have only recently begun to use IT for
instruction. The types of technology that can be
applied in adult literacy programs range from
computer-assisted instruction to the use of audio and
video recordings and the Internet (Withrow, 2003).
All these technologies will enhance adult instruction
and learning by benefits as:

• removing or diminishing barriers to
participation, including time and distance

• extending instruction into life contexts, like
home and workplace

• providing access to a wide range of
resources and materials for instruction

• facilitate learning for minorities with special
needs and differences.

The poverty cycle can be broken and by literacy
learning at early ages but also at adult age (Thomas,

1989). A practical IT solution proposed by the
authors is as an intelligent Literacy Tool (called by
the authors iLIT).
The tool consist in a workspace based on a cheap
thin-client (e-Box) and a software developed in a
Windows CE environment using .NET framework
and C# as programming language (Sharp and Jagger,
2002; Muench C., 2000; Microsoft, 2005). External
hardware used is: a graphic tablet as pointing device,
a VGA to TV converter for using a standard TV set
as display, an USB memory stick and audio
speakers. Main features are:

- Friendly user interface based on voice
messages and easy to read cultural suggestive
icons and menus
- Multi-lingual support (for minority learner)

The tool was thought as an affordable and robust
alternative to expensive Tablet or Slate PCs, keeping
in mind that hundred of years the ancient slate tablet
was used to learn reading and writing.

Fig. 1 System overview

The application was developed for Romanian
language, but in order for the project to achieve its
overall goal of creating a stand-alone platform for
fighting illiteracy, an effort was made to provide also
the necessary building blocks and interfaces to help
other developers extend the platform for their own
language and culture (University of Craiova, 2005).

2. SYSTEM OVERVIEW

Main system components are presented in Figure 1
with the hardware and software elements included in
the iLIT System, and also the connections between
them.
eBox-II (Icop Technology) provides one of the
fastest Thin Client performance on the market,
Vortex86 CPU at 200 MHz, 128Mb of SDRAM
memory (8Mb dedicated for graphics controller),
integrated accelerated 2D graphics controller, 32 MB
of “Flash Disk” for storing embedded Windows CE

image and applications, 10/100 BaseT Fast Ethernet
connector, 2 PS/2 ports for PS2 Keyboard and
Mouse, 2 USB ports, headphone and microphone
connectors, SVGA monitor port, 1 parallel and 1
serial port (Icop Technology, 2005).
As display, a common TV set is used, connected to
the e-Box through a VGA to TV Video Modulator. A
TV set was used instead of a PC Monitor, firstly to
lower the cost of the system, and secondly because a
TV is found in most peoples’ houses.
The application also communicates with the user by
speaking to him, by means of the attached speakers
to the e-Box. As a pointing device it is used a
Watcom Graphic Tablet attached to e-Box through
USB, tablet that allows pointing and writing in a
more familiar way consistent with every day life.
The Application Kernel is the coordinator for all
software modules and thus it is Flashed on the e-Box.
To store the additional modules and their data an
USB Memory Stick is used, that offers enough space
for storing a great variety of data.
A Speech Module is in a direct communication with
the Application Kernel that exports its features to
other modules. The Application Kernel also displays
a graphical user interface, allowing the selection of
individual modules.

3. SYSTEM IMPLEMENTATION

A platform Windows CE image was built for this
application. Apart from the e-Box II BSP drivers,
specific drivers were added for USB Mass Storage
Devices and FAT file system to allow future
expansions; a hard disk drive was not included from
obvious reasons. The image includes the standard
Windows CE GUI because future efforts will be
made towards creating Learning Modules that will
allow students to achieve basic Computer Skills.
Graphics and multimedia support is extensive due to
the audio and visual content of the Learning
Modules. Actual image size is roughly 22 MB out of
e-Box total of 64MB, without the application.
An important fact is that user interface was geared
for elderly people. Layout, colours and colour
combinations, font types and sizes were chosen
according literature recommendations and guidelines
as (Thomas et. al, 1999).
Another fact is that all algorithms used have to be
highly computational effective due to processor low
processing power and the lost of speed by using
managed code (.NET C#).
The system modular architecture built around a
kernel module is described in the following.

3.1 Kernel module

The kernel provides an easy-to use, dynamic
interface used to launch any module that might be
added to the learning platform. Its main goal is to
achieve an intuitive and complete launch platform for

e-Box

VGA2TV
TV set

Words ModuleWriting Module
Letters Module

USB Memory
Stick

USB Graphic
Tablet

Application
Kernel

Speech
 Module

Speakers

all the future additions to the system. This is
achieved by independently loading each module in its
own AppDomain thus allowing freedom to the
module developer, while the user is provided with
enough information about the purpose of the module.
The concept is described in Figure 2. The loader and
remote loader classes provide basic loading
capabilities to all the modules, while the main
communication method between modules is ensured
through the windows messaging system.

Fig. 2 Kernel module concept

Due to the need for flexibility, the project relies on
USB MassStorage Devices to provide the physical
support for incoming modules. This in turn, created
the need for an insertion/removal detection
mechanism, and while the PnP capabilities of the
platform do not provide the means for this, a watcher
thread was implemented to address this problem.
This thread will watch for any changes in the \Hard
Disk<#> directories and will raise an event every
time such a directory is created or deleted.
The UserInterface class manages the intuitive
interface, which the user actually sees, and interacts
with. Built with simplicity in mind it only has 6
pictures that also act as buttons.

Fig. 3 Kernel user interface screen

The four images in the middle are the actual module
buttons the images are loaded from the module
directory, which must contain a bmp image with the
same name as the assembly.

The 2 lower buttons provide means to navigate
through the modules, 4 at a time; when there are less
than 4 modules available the correspondent image
will become <module unavailable>.
OnMouseOver the interface will play a sound, which
will explain the purpose of the module to the user.
When modules are inserted or removed the interface
is notified in order to prevent loading inexistent
modules or not showing the newly - arrived modules.
The PluginList is a collection, which holds the
absolute paths to all the available modules at a time.
The modules are indexed by the drive name and
module number. These are all the required
parameters for the UserInterface to work properly.
The PluginManager class will keep track of all the
loaded modules and the drives they were loaded
from. The Loader and remoteLoader classes provide
basic loading and unloading means as well as
probing for a particular interface in a module, and
initial context passing.

3.2 Speech Module

In order to achieve the goal of proper learning for
targeted people, accurate speech modules are needed,
which give proper help to the user, mainly to
accommodate and navigate within the application
interface, and secondly to send voice messages about
current tasks, answers to user commands and
accurate reading of text messages.
There are different speech needs for iLIT modules,
some imply explaining the interface usage, others to
reproduce a text who can be in played in plain words
or spelled by letters, or to read the message (words or
letters) written by the user on the graphic tablet, also
spelled by letters. In order to accomplish all these,
the speech engine has methods to play the whole
message or to split messages in letters and play them
in corresponding order, or to combine the two
methods one after another.
These tasks can be accomplished using two basic
design approaches, one using a Text-To-Speech
(TTS) technology to convert text
commands/messages to spoken words and seconds
using prerecorded audio message (commands, words,
sentences and letters). The TTS technology
represents a better storage space saver and implies a
lesser work for the module creator, reducing the time
needed for recording audio samples, but the problem
with this implementation is that it uses grammar rules
different for every language, and there are a lot of
languages without a proper TTS engine implemented.
The communication between the command module
and speech module is ensured through the windows
messaging system when a proper message is sent to
speech module. The message contains information
about the audio file to be played, the desired method
of speech, whole word or spelled by letters.
To reduce the needed storage space, audio samples
are normally compressed using MPEG Audio Layer
3 codec. But there is also a list of common audio

samples to be played, for example letters that are
frequently used, and in order not to waste processing
power to decode them, they are stored as
uncompressed PCM audio files.
The main class is SpeechEngine who manages the
sound playing requests. This class translates the
received message from any other module, parses and
processes the message in the appropriate way. For
example, if the message contains a valid path to a
mp3 file, it plays that audio, and then it will or will
not spell by letters the sent message. The
SpeechEngine knows that the text representation for
every message that will be spelled is the name
(without path and extension) of the requested audio
file to be played. If the string from the message is not
a valid path, the string will be spelled.
For playing the whole audio file, it chooses the
SpeechEngine.Play() function that uses MP3Player
class to play that file, and for spelling
SpeechEngine.Spell() that splits the message in letters
and uses the WavePlayer class to play the files
corresponding to each letter. The WavePlayer class
has a list of audio streams corresponding to each
letter that is loaded in memory at first usage and that
can be played by the Play(), function which splits the
message in letters.
The MP3Player and WavePlayer classes implement
the AudioPlayer interface. The code is language
independent, the only thing that needs to be modified
for translations being the alphabet and its
corresponding audio files. The module was tested for
performance during the implementation, and that’s
why the sounds for letters (which are frequently
used) are stored in uncompressed files and loaded in
memory at first usage.

3.3 Learning the Alphabet - Letters Module

This module focuses on presenting the letters of the
alphabet, one by one, to the user, and testing the
user’s abilities to learn each letter, by testing him
twice for each letter. The tests consist of checking
from a grid of random letters only the correct ones.
The main classes for this module are presented in the
class diagram. The main application class is
LearnToReadModule1 that contains an instance of
TabletInterface that represents the backbone for the
user interface.
The TabletInterface class was designed to be easily
used as the backbone for future implementations. It
consists in a number of 28 buttons, each having an
identification number from (0…27), arranged along a
center drawing panel. The buttons of the
TabletInterface were considered instances of
PictureBox from System.Windows.Forms so that
pictures could be applied on each of them. Also
behind the buttons and the drawing panel, we placed
another PictureBox that represents the background of
the user interface. The drawing panel placed in the
center of the screen is an instance of
System.Windows.Forms.Panel and represents the

workspace for the LearnToReadModule1 or another
module. The TabletInterface can be applied on any
given Form and its buttons can be easily customized
once this class is instanced.
LearnToReadModule1 class represents the core of
this learning module, guiding the user through the
alphabet and testing him to decide whether he has
learned the letter and can advance to the next one.
Previous Learned Letter Button allows the user to
view the letters that he has learned so far. A pressing
of this button switches between the current displayed
letter and the previous letter of the alphabet. The
Next Letter Button changes the displayed letter to the
next letter of the alphabet. If the maximum letter was
reached, that is the next letter to be learned by the
user, this button hides itself. Advance to Test Button
leads the user to tests for the current letter or to the
next letter if the user passed test 2 for the current
letter. Exit Application Button leaves the application
and saves, using the XML_Module1 class, the needed
information for a later run of the module.

3.4 Words Module

After the user got familiarized with all of the letters,
he/she can use this module to learn how the letters
are linked together in words.
The words that will be presented refer to entities that
the user is already familiarized with, this approach
ensuring a fast learning process. A bunch of words
that may not be part of the user’s life are also
included, increasing his/her general knowledge.
Anyway, the words list can be easily customized by
the software support personnel, based on each user’s
living environment, habits, etc.
This module consists of two sub-modules: first one is
used for presenting the words to the user, and the
former for allowing the user test his reading abilities
acquired during the presentation.
Three more buttons are available, two for navigating
through the words, and one for replaying the current
word. The presentation of a word consists of
displaying the image of the object that the word
refers to, and then the word is spelled letter by letter
both visual and audio.
Because the button that is implemented by .NET
Compact Framework does not allow displaying an
image on it (Wigley and Wheelwright, 2002), we
created our own CImageButton class which is
derived from the standard Control class. Any button
can be instantiated by CImageButton in two ways:
with an image on in and with text (as a standard
button, but with a different look-and-feel).
The former CImageButton instances are used in the
Words Test sub-module, for displaying the letters, but
it is intended to put text on buttons in advanced
modules, when the user will have enough reading
proficiency. For easily changing the layout, the
CImageButton class provides public properties that
allow changing the caption, the image and the sound

that will be played when the mouse is over the
control.

Words Test; After the user gets familiarized with the
words presented in the above sub-module, he can
click on the next option in the upper left of the screen
for taking a test. The test consists in displaying an
image (from the ones used during the presentation),

Fig. 4 Letters module screen

while the user tries to choose the correct letters to
compose the corresponding word.
As seen in the picture, there is a button matrix at the
bottom of the screen, each button containing a letter.
In order to compose the word, the user must click on
the button that contains the next letter in the word.
The system waits until the user clicks on the correct
button, each mistake raising an audio message. When
the entire word was completed, it automatically
passes on to the next word.
For enforcing the user to click on the correct letters,
without automatically learning the column and row
number of the button that must be pressed, the letters
are generated in a random order. In addition, the
buttons may contain symbols other than letters. A
fast algorithm for this task is proposed. An index
array initialized with letters, in the order they appear
in the alphabet it is used. Then a random number N is
generated, representing the number of permutations
that will be made. This number should be big enough
to ensure a good shuffle of the letters. Then N
permutations are made, at each step two random
indexes being chosen and the elements that are found
at these positions being swapped.
The user interface related classes were kept apart
from the classes that handle the back logic of the
application, allowing easy change and debug of the
functionality without changing the front interface.

3.5 Learning to Write - Writing Module

The aim of iLIT’s Write Module is to create and
improve the user’s writing capabilities. The user
must draw an approximate shape of the letter that is
displayed to him, and can advance to the next letter if

it’s decided that what he drew is 70% similar to the
displayed letter’s shape.
Consider, for example, that the user is in the process
of learning to write the letter “A”. The user interface
used for write training is shown in Figure 5.

Fig. 5 Writing module main screen

The user interface updates with the letter and its
corresponding picture, the user is told using voice
messages about the letter that he must draw and the
suggestive word that contains this letter. The
Drawing Board represents the area where the user
must draw the letter presented to him in the upper left
corner. Below the presented letter is placed a
suggestive picture of a word, e.g. “Acordeon” that
contains the letter “A”. If the user decides that what
he drew is wrong, he can always clear the Drawing
Board by pressing the Reset Board Button. If it’s
decided to leave this module, the Exit Application
Button does it If the user considers that what he has
drawn is correct and wants to advance to the next
letter he has to press the Next Letter Button, which
leads the user to the next letter only if the letter
drawn represents at least a 70% approximation of
letter “A”.
As a skeleton for the user interface the
TabletInterface class was used, presented earlier, in
the iLIT’s Letters Module. On the drawing panel of
the TabletInterface for the shown letter’s
representation, the displayed picture, and drawing
board PictureBox objects were used.
Writing recognition algorithm behind the user
interface is the decision factor that lets the user
advance to the next letter. Hand writing recognition
algorithms involve training the software to recognize
each letter. The training process is required, because
it is almost impossible that the final user would draw
the same letter in the same way, each time. What the
user draws will be always an approximation the
correct shape of the letter, the approximation degree
depending on different factors, such as user’s
handiness (which should be very low for iLIT’s
intended users), precision of the pointing device, etc.
An additional tool called CharTrainer was created,
that assists the process of training the characters. This
has a simple interface that allows drawing a
character, calculating a signature and saving this
signature to a binary file. For example, the letter A is
drawn and the signature saved in the file A.dat. When
the final user is required to draw the letter A in the
Writing Module, the signature for his drawing will be

Advance to Next
Test / Letter Button

Show Current Letter
Button

Count till end of test

Letter Grid

Reset

Next Letter Exit
n

Drawing

calculated, and then compared with all of the
signatures found in A.dat. If the new signature fits
with one of the existing signatures, then the user has
drawn the correct letter. For the writing algorithm to
work properly, the software must be trained to
recognize dozens of shapes for the same letter. As an
improvement of the comparison process, only an
average signature is stored in the binary file, the
algorithm being reduced to only one comparison.
When CharTrainer adds a new signature vector, it
will increase the number of signatures, and update
the average signature. CharTrainer was designed so
it can be configured to work with different pattern
recognition algorithms, by only changing the
function that calculates the signature.

4. RESULTS AND FUTURE DEVELOPMENTS

First modules developed and tested proved that such
a solution is a viable one and could be further
developed to its end-goal of bringing education and
knowledge closer to those who need it.
Such system through modularity, ruggedness and the
ability to operate remotely on common and
inexpensive hardware could prove to be a way for
aiding remote or isolated communities in achieving at
least a basic level of education.
More modules were planned, with current work
focused on optimization, on improving the existing
algorithms and the user interface. One algorithm that
it is a candidate for improvement is the one used by
the Writing module. Alternatives are now considered
to the pattern recognition algorithm currently used,
so a choice will be able made for the one that is faster
and well suited to be used by persons that do not
have good writing abilities yet.
A quick overview of other possible additions:
- User tracking and profiling, intended to provide a
valuable tool for teachers and instructors, in
assessing a user’s knowledge, to identify knowledge
gaps and areas where the student needs further
assistance.
- Network connectivity, allowing a teacher to work
with several students remotely, over the Internet and
also allowing teachers to reach remote areas without
the need of physical presence.
- A special encasing, which would allow the system
to function almost independently, offering better
protection for the device in harsh, untrained
environments.

5. ACKNOWLEDGEMENTS

The work presented in this paper is based on the
report presented by a team from University of
Craiova at the final of the Microsoft’s contest
Windows Embedded Student Challenge 2005
(University of Craiova, 2005), see Figure 6. For this
contest Microsoft Corp. provided the needed

software, basic hardware (e-Box II) and support in
order to achieve these results.

Fig.6 iLIT application on display at WESC2005

Final at Microsoft, Redmond, WA

REFERENCES

Blake, B. E. and Blake R. W. (2002) Literacy and

Learning: A Reference Handbook. ABC-CLIO
Deutsche Welle (2002), Trapped in Illiteracy,

19.02.2002, www.dw-world.de
Icop Technology, Inc. (2005) eBox-150LS User

Manual v 1.0, www.icop.com.tw
Microsoft, Inc. (2005), Window CE Home Page

http://msdn.microsoft.com/embedded/windowsc
e/default.aspx

Muench C., (2000) The Windows CE Technology
Tutorial-Solutions for the developer, Addison-
Wesley

Ringold D., Orenstein M. A. and E. Wilkens (2003),
Roma in an expanding Europe. Breaking the
poverty cycle, World Bank Study, April 2003

Sharp, J. and Jagger, J. (2002) Microsoft Visual C#
.NET Step by Step, Microsoft Press, 2002

Thomas A. M.,(1989) Adult literacy volunteer tutor
program evaluation kit, Ministry of Advanced
Education and the National Literacy Secretariat,
Victoria, B.C., Canada, 1989

Thomas, K.G.F, Laurance, H.E., Luczak, S.E. and
W.J. Jacobs.(1999) "Age-Related Changes in a
Human Cognitive Mapping System: Data from a
Computer-Generated Environment."
CyberPsychology & Behavior 2(6), December
1999, pp 545-566.

University of Craiova (2005), iLIT An intelligent
tool to assist literacy teaching and learning,
Final report, Windows Embedded Student
Challenge 2005, WESC2005,
www.windowschallenge.com

Withrow, F. B. (2003) Literacy in the Digital Age:
Reading, Writing, Viewing, and Computing,
Scarecrow, 2003

Wigley, A. and Wheelwright, S.(2002) Microsoft
.NET Compact Framework (Core Reference),
Microsoft Press, 2002

